Evaluation of a New Point-of-Care Serologic Assay for Herpes Simplex Virus Type 2 Infection

Susan S. Philip, Katherine Ahrens, Clara Shayevich, Romeo de la Roca, MaryAnn Williams, Daniel Wilson, Kyle Bernstein, and Jeffrey D. Klausner

Sexually Transmitted Disease Prevention and Control Section, San Francisco Department of Public Health, San Francisco, California

Herpes simplex virus type 2 infection is one of the most common sexually transmitted diseases. Because presentation is often atypical or subclinical, serologic testing is necessary for diagnosis, treatment, and counseling. In an urban clinic that specializes in the treatment of sexually transmitted disease, a new point-of-care rapid serologic test was compared with enzyme-linked immunosorbent assay or Western blot for the detection of herpes simplex virus type 2. With use of an enzyme-linked immunosorbent assay index cutoff value of 1.1, the rapid test was found to have a sensitivity of 97%, a specificity of 98%, a positive predictive value of 92%, and a negative predictive value of 99%. Increasing the cutoff index value to 3.5 increased the test sensitivity to 100%.

Genital herpes due to herpes simplex virus type 2 (HSV-2) infection is common and remains underdiagnosed in the United States [1]. Appropriate counseling and treatment are predicated on an accurate diagnosis of genital herpes. Because most HSV-2 infections are subclinical or unrecognized, serologic testing is often necessary to make a diagnosis; after a diagnosis is made, infected patients can be counseled that symptom awareness, condom use, and suppressive treatment may all decrease the risk of transmission to uninfected partners [2, 3].

Western blot is considered the gold standard for HSV-2 serologic testing [4], but because of its cost and limited availability, commercially available type-specific HSV-2 serologic assays are more commonly used for screening [5]. Rapid HSV-2 serologic assays that can be performed on-site with use of blood specimens obtained by fingerstick provide several potential advantages over standard laboratory-based assays. First, they allow for same-visit diagnosis and immediate counseling and treatment, if indicated. Second, they do not require additional expensive equipment, which is particularly important in areas with limited resources or infrastructure. Third, capillary blood tests are preferable to standard venipuncture because of decreased discomfort and lower risk of occupational bloodborne infection, and performance of the tests does not require a trained phlebotomist.

A new point-of-care rapid assay for the detection of HSV-2 (HerpeSelect Express; Focus Diagnostics) has recently been approved by the United States Food and Drug Administration, and preliminary studies have estimated the test to have high sensitivity (86%–100%) and specificity (97%–100%), compared with HSV-2 immunoblot and Western blot testing [6, 7]. The test requires only 2 steps but does not yet have a Clinical Laboratory Improvement Amendments waiver. To gain additional information on point-of-care test performance when the test is performed by clinic staff in an urban sexually transmitted disease clinic, we compared the results of HerpeSelect Express with our current standard HSV-2 serologic assay, the HerpeSelect HSV-2 ELISA (Focus Diagnostics), with select confirmatory Western blot testing.

Patients and methods. Patients were recruited from San Francisco’s municipal sexually transmitted disease clinic during October 2007. Eligible patients included those ≥18 years of age who were able to provide verbal consent in English, Spanish, or Russian and who were receiving a serologic test for HSV-2 infection as part of their routine clinical care. Reasons for HSV-2 testing included diagnostic workup as well as asymptomatic screening, according to California guidelines [8]. The study protocol was approved by the Committee on Human Research at the University of California, San Francisco (H9978–31317).

After informed consent was obtained by a nurse practitioner clinician, all rapid tests were performed by 1 of 3 clinic staff: a laboratory assistant, a registered nurse, and a health worker, whose duties include phlebotomy and the performance of point-of-care syphilis and HIV tests. After venipuncture, whole blood was obtained by fingerstick puncture with use of a sterile lancet (Tenderlett; International Technidyne). The first drop of whole blood was drawn up in a capillary tube provided as part of the HerpeSelect Express assay kit. The attached plunger was used to dispense the blood from the capillary tube and the blood was deposited onto the test pad of the kit. After 30
Table 1. Results of Western blot testing on 12 specimens with discordant, equivocal, or indeterminate HerpeSelect Express test and ELISA results.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>HerpeSelect Express result</th>
<th>HSV-2 ELISA index value</th>
<th>HSV-2 ELISA interpretation</th>
<th>HSV-2 Western blot result</th>
<th>Final interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pos</td>
<td>0.2</td>
<td>Neg</td>
<td>Pos</td>
<td>True pos</td>
</tr>
<tr>
<td>2</td>
<td>Pos</td>
<td>0.3</td>
<td>Neg</td>
<td>Pos</td>
<td>True pos</td>
</tr>
<tr>
<td>3</td>
<td>Pos</td>
<td>0.9</td>
<td>Neg</td>
<td>Pos</td>
<td>True pos</td>
</tr>
<tr>
<td>4</td>
<td>Pos</td>
<td>0.8</td>
<td>Neg</td>
<td>Neg</td>
<td>False pos</td>
</tr>
<tr>
<td>5</td>
<td>Pos</td>
<td>0.6</td>
<td>Neg</td>
<td>Neg</td>
<td>False pos</td>
</tr>
<tr>
<td>6</td>
<td>Pos</td>
<td>0.0</td>
<td>Neg</td>
<td>Neg</td>
<td>False pos</td>
</tr>
<tr>
<td>7</td>
<td>Pos</td>
<td>1.0</td>
<td>EQ</td>
<td>I</td>
<td>NA (excluded)</td>
</tr>
<tr>
<td>8</td>
<td>Neg</td>
<td>0.9, 1.1a</td>
<td>I</td>
<td>Neg</td>
<td>True neg</td>
</tr>
<tr>
<td>9</td>
<td>Neg</td>
<td>1.0</td>
<td>EQ</td>
<td>Neg</td>
<td>True neg</td>
</tr>
<tr>
<td>10</td>
<td>Neg</td>
<td>1.1</td>
<td>Pos</td>
<td>Neg</td>
<td>True neg</td>
</tr>
<tr>
<td>11</td>
<td>Neg</td>
<td>1.2</td>
<td>Pos</td>
<td>Neg</td>
<td>True neg</td>
</tr>
<tr>
<td>12</td>
<td>Neg</td>
<td>2.5</td>
<td>Pos</td>
<td>Pos</td>
<td>False neg</td>
</tr>
</tbody>
</table>

NOTE. EQ, equivocal (index value, 0.9–1.1); I, indeterminate; pos, positive (index value, >1.1); neg, negative (index value, <0.9).

* Result could not be resolved on repeated testing.
Discussion. The HerpeSelect Express HSV-2 test was developed to allow health care providers access to a simple, on-site test that can be used for diagnosis of HSV-2 infection in as little as 15 min. Compared with HSV-2 ELISA at a cutoff index value of >1.1, the sensitivity and specificity of the HerpeSelect Express assay were comparable to previously reported results and support its clinical use [10]. At both cutoffs used in our study, the negative predictive values were higher than the positive predictive values, and at the relatively low overall HSV-2 seroprevalence in our participants, both the positive and negative predictive values were higher than those reported elsewhere [6].

In addition to its favorable test performance characteristics, the HerpeSelect Express assay was simple to use. Although we did not use the test results for diagnosis, patients were very willing to accept and complete testing. Our evaluation showed that this was overall an easy assay to perform and was comparable to other tests which currently have a Clinical Laboratory Improvement Amendments waiver; the test procedures did not prove burdensome in our busy municipal sexually transmitted disease clinic.

Importantly, several studies have demonstrated that serological diagnosis of HSV-2 infection (including diagnosis with a rapid test) was not associated with adverse psychological effects [11, 12]. Nonetheless, because genital herpes is a lifelong infection with implications for current and future sexual partnerships, a primary goal must be to reduce false-positive and false-negative results that might cause unnecessary distress and treatment or unwitting ongoing transmission, respectively.

Given this goal of providing the most accurate possible information to the patient, one potential drawback of a qualitative rapid test is that it does not allow for further categorization of positive results, as is the case with ELISA index values. The use of higher index cutoff values has been shown to correlate with a greater likelihood of true infection, and in multiple settings it has been demonstrated to increase specificity and positive predictive value, particularly in populations with a low prevalence of HSV-2 infection [9, 13]. Another proposed solution has been to use a 2-stage testing strategy for confirmation after HSV-2 rapid testing to increase the positive predictive value, as is the standard for HIV rapid testing [14].

There were several limitations of this study that deserve mention. Our findings among patients at a sexually transmitted disease clinic may not be generalizable to other patient populations. An additional limitation is that all specimens were not tested with both ELISA and Western blot and, of those that
were, 5 had false-positive ELISA results when compared with Western blot, whereas the HerpeSelect Express test results were correct. However, because of the cost and limited availability of Western blot assay, some studies of HSV-2 serologic tests have used alternate assays for comparison [15, 16]. Finally, because we did not disclose HerpeSelect Express results to patients, we were unable to assess the effects of rapid testing on overall counseling duration; rapid testing will likely add length to the testing visit [17].

Because the value of a screening test depends not only on its performance characteristics but also on disease prevalence, it will be important for providers to consider their local HSV-2 epidemiology to best interpret results and counsel patients, particularly patients in general populations at low risk for HSV-2 infection who may desire testing. Additionally, the most highly promising sites for widespread implementation of low-complexity rapid herpes testing may be in developing countries, many of which have a high prevalence of HSV-2 infection and have resource limitations that may preclude laboratory-based testing [13]. Additional studies will be crucial to guide the best use of all available type-specific HSV serologic tests in varied populations to most accurately diagnose genital herpes.

Acknowledgments

We thank the San Francisco City Clinic clinicians, laboratorians, and administrative staff; the San Francisco Public Health Laboratory staff, particularly Ernie Wong and Sally Liska; and our patients who advance sexual health by participating in research. We thank Focus Diagnostics, for donating the rapid assays and testing reagents for this study and for a research grant for this project.

Manuscript preparation. Focus Diagnostics reviewed and commented on initial drafts of this manuscript.

Potential conflicts of interest. J.D.K. has received research and educational funding from Focus Diagnostics. All other authors: no conflicts.

References